skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knowlton, Nancy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundMicrobes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH — an important global coral reef stressor — can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. ResultsWe test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. ConclusionsWe demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem change. 
    more » « less
  2. Metazoans host complex communities of microorganisms that include dinoflagellates, fungi, bacteria, archaea and viruses. Interactions among members of these complex assemblages allow hosts to adjust their physiology and metabolism to cope with environmental variation and occupy different habitats. Here, using reciprocal transplantation across depths, we studied adaptive divergence in the corals Orbicella annularis and O. franksi , two young species with contrasting vertical distribution in the Caribbean. When transplanted from deep to shallow, O. franksi experienced fast photoacclimation and low mortality, and maintained a consistent bacterial community. By contrast, O. annularis experienced high mortality and limited photoacclimation when transplanted from shallow to deep. The photophysiological collapse of O. annularis in the deep environment was associated with an increased microbiome variability and reduction of some bacterial taxa. Differences in the symbiotic algal community were more pronounced between coral species than between depths. Our study suggests that these sibling species are adapted to distinctive light environments partially driven by the algae photoacclimation capacity and the microbiome robustness, highlighting the importance of niche specialization in symbiotic corals for the maintenance of species diversity. Our findings have implications for the management of these threatened Caribbean corals and the effectiveness of coral reef restoration efforts. 
    more » « less